From A1 to $A_{\infty }$: New Mixed Inequalities for Certain Maximal Operators
نویسندگان
چکیده
In this article we prove mixed inequalities for maximal operators associated to Young functions, which are an improvement of a conjecture established in Berra (Proc. Am. Math. Soc. 147(10), 4259–4273, 2019). Concretely, given r ≥ 1, u ∈ A1, \(v^{r}\in A_{\infty }\) and function Φ with certain properties, have that inequality $$ uv^{r}\left( \left\{x\in \mathbb{R}^{n}: \frac{M_{\Phi}(fv)(x)}{ v(x)}>t\right\}\right)\leq C{\int}_{\mathbb{R}^{n}}{\Phi}\left( \frac{|f(x)|}{t}\right)u(x)v^{r}(x) dx holds every positive t. As application, furthermore exhibe the generalized fractional operator Mγ,Φ, where 0 < γ n is \(L\log L\) type.
منابع مشابه
Lφ Integral Inequalities for Maximal Operators
Sufficient (almost necessary) conditions are given on the weight functions u(·), v(·) for Φ−1 2 [ ∫ Rn Φ2 ( C2(Msf)(x) ) u(x)dx ] ≤ Φ−1 1 [ C1 ∫ Rn Φ1(|f(x)|)v(x)dx ] to hold when Φ1, Φ2 are φ-functions with subadditive Φ1Φ 2 , and Ms (0 ≤ s < n), is the usual fractional maximal operator. §
متن کاملCertain maximal curves and Cartier operators ∗
In general, this bound is sharp. In fact if q is a square, there exist several curves that attain the above upper bound (see [4], [5], [14] and [23]). We say a curve is maximal (resp. minimal) if it attains the above upper (resp. lower) bound. There are however situations in which the bound can be improved. For instance, if q is not a square there is a non-trivial improvement due to Serre (see ...
متن کاملHybrid Proximal-Point Methods for Zeros of Maximal Monotone Operators, Variational Inequalities and Mixed Equilibrium Problems
We prove strong and weak convergence theorems of modified hybrid proximal-point algorithms for finding a common element of the zero point of a maximal monotone operator, the set of solutions of equilibrium problems, and the set of solution of the variational inequality operators of an inverse stronglymonotone in a Banach space under different conditions. Moreover, applications to complementarit...
متن کاملMaximal Inequalities for Associated Random Variables
In a celebrated work by Shao [13] several inequalities for negatively associated random variables were proved. In this paper we obtain some maximal inequalities for associated random variables. Also we establish a maximal inequality for demimartingales which generalizes and improves the result of Christofides [4].
متن کاملOn weighted inequalities for certain fractional integral operators
and Dn denotes the derivative operator ∂/∂x1, . . . ,∂xn. The operators in (1.1) provide multidimensional generalizations to the well-known one-dimensional Riemann-Liouville andWeyl fractional integral operators defined in [5] (see also [1]). The paper [7] considers several formulas and interesting properties of (1.1). By invoking the Gauss hypergeometric function 2F1(α,β;γ;x), the following ge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Potential Analysis
سال: 2021
ISSN: ['1572-929X', '0926-2601']
DOI: https://doi.org/10.1007/s11118-021-09903-6